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The growth of Gortler vortices in boundary layers on concave walls is investigated. 
It is shown that for vortices of wavelength comparable to the boundary-layer 
thickness the appropriate linear stability equations cannot be reduced to ordinary 
differential equations. The partial differential equations governing the linear stability 
of the flow are solved numerically, and neutral stability is defined by the condition 
that a dimensionless energy function associated with the flow should have a 
maximum or minimum when plotted as a function of the downstream variable X .  
The position of neutral stability is found to depend on how and where the boundary 
layer is perturbed, so that the concept of a unique neutral curve so familiar in 
hydrodynamic-stability theory is not tenable in the Gortler problem, except for 
asymptotically small wavelengths. The results obtained are compared with previous 
parallel-flow theories and the small-wavelength asymptotic results of Hall (1982a, b ) ,  
which are found to be reasonably accurate even for moderate values of the 
wavelength. The parallel-flow theories of the growth of Gortler vortices are found to 
be irrelevant except for the small-wavelength limit. The main deficiency of the 
parallel-flow theories is shown to arise from the inability of any ordinary differential 
approximation to the full partial differential stability equations to describe adequately 
the decay of the vortex at  the edge of the boundary layer. This deficiency becomes 
intensified as the wavelength of the vortices increases and is the cause of the wide 
spread of the neutral curves predicted by parallel-flow theories. It is found that for 
a wall of constant radius of curvature a given vortex imposed on the flow can grow 
for at most a finite range of values of X. This result is entirely consistent with, and 
is explicable by the asymptotic results of, Hall (1982~) .  

1. Introduction 
Our concern is with the development of a self-consistent theory to explain the 

growth of Gortler vortices in growing boundary layers on concave walls. Such vortices 
are of importance because destabilizing centrifugal forces exist for certain boundary- 
layer profiles of practical importance. The existence of the vortices was predicted by 
Gortler (1940), who presented a linear stability analysis similar to that given by 
Taylor (1923) for centrifugal instabilities in Couette flow. The apparent similarity 
between Taylor and Gortler vortices is in fact misleading; the effect of the non-parallel 
nature of the basic flow, in which the latter develops, is not negligible, as was assumed 
by Gortler. 

Apart from the obvious importance of Gortler vortices in the transition process 
on the lower sides of aerofoils, it is thought that they are crucial in determining the 
efficiency of turbine blades (see e.g. Kemp 1977; Martin & Brown 1979). In both of 
these engineering situations the possible co-existence of Tollmien-Schlichting waves 
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must not be overlooked. However, as a starting point for such a complex interaction 
problem, we shall in this paper consider only the growth of Gortler vortices in the 
linear regime. 

In  two previous papers Hall (1982a, b ) ,  hereinafter referred to as I and 11, a 
self-consistent asymptotic description of the growth of short-wavelength Gortler 
vortices was given. In  particular, in I it was shown that the equations governing the 
centrifugal instability of a boundary-layer flow are partial differential equations. The 
approximations of these equations discussed by Gortler (1940) and subsequent 
authors result in simpler ordinary differential equations, but cannot be justified. In  
I a formal asymptotic solution of the full partial differential equations was given for 
short-wavelength vortices, whilst in I1 the nonlinear development of the vortices was 
described. The crucial simplification of these papers is that the wavelength of the 
vortices was taken to be small compared with the boundary-layer thickness. In  this 
limit the vortices are concentrated in an internal viscous layer which thickens as the 
vortices grow. The linear theory of I provides a right-hand branch for the neutral 
curve in the wavenumber-Gortler-number plane. In  this paper we concentrate on O( 1) 
wavenumbers, which are thought to be the most likely to occur in situations of 
practical importance. 

The present investigation shows the regime in which the asymptotic results of I 
are valid and confirms one of the most surprising results of that paper. We refer to 
the result found in I that,  for a wall of constant radius of curvature, the boundary 
layer ultimately becomes more stable as the fluid is convected downstream. We find 
that a vortex of fixed wavelength is locally unstable for only a finite distance along 
the boundary layer for walls of constant curvature. As the fluid moves downstream, 
any given vortex flow ultimately decays to zero in the absence of nonlinear effects. 
If the curvature of the wall increases a t  a sufficient rate we shall see that this ultimate 
region of stability is never reached and the vortex flow remains unstable infinitely 
far downstream of the location where it is imposed on the flow. 

I n  order to determine the stability characteristics of Gortler vortices of wavelength 
comparable to the boundary-layer thickness, previous investigators have solved 
truncated forms of the full partial differential equations governing the stability of 
the flow. I n  particular, Gortler (1940) solved a simplified system of equations 
essentially obtained by retaining terms equivalent to those appearing in the 
Taylor-vortex linear stability equations. The solution of these equations given by 
Gortler was incorrect, and Hiimmerlin (1955) re-solved the same equations. The 
neutral curve obtained in this parallel-flow approximation has a minimum a t  zero 
wavenumber. I n  order to remedy this deficiency, numerous authors have solved 
various modified forms of Gortler’s equations, but without exception the modified 
equations are all ordinary differential equations. (For a detailed review of some of 
these investigations see Herbert (1976).) Perhaps the most important of these 
calculations was the one given by Smith (1955), who appears to have been the first 
investigator to allow for any non-parallel effects. Thus Smith retained some of the 
terms associated with the non-parallel nature of the basic flow and in fact found a 
critical Gortler number at a finite wavenumber. However, the equations solved by 
Smith were ordinary differential equations, and subsequent ‘improvements ’ to 
Smith’s equations have produced neutral curves quite different to his neutral curve 
for O( 1) wavenumbers. 

The concept of a unique neutral curve, so familiar in parallel-flow stability 
problems, will be shown in this paper to be untenable for the Gortler-vortex problem. 
We shall show that the growth or decay of a disturbance imposed on the boundary 
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layer depends not only how it is introduced into the flow but also on its location. 
This result seems to be consistent with the available experimental observations. We 
shall further show that the total disagreement of previous theories a t  0(1) 
wavenumbers isnot surprising, since, without the partial derivativesofthedisturbance 
in the flow direction, the decay of the disturbance a t  the edge of the boundary layer 
is not described correctly. I n  previous investigations this decay is facilitated by a 
balance of diffusion of vorticity in the two directions normal to the flow direction. 
We show here that  the appropriate balance is in fact one between convection in the 
flow direction and diffusion normal to the wall. Thus a t  small wavenumbers the 
vortices are still confined to the boundary layer, and the stability equations derived 
on this assumption remain valid. Clearly any approximation that results in an 
ordinary differential system must be in error for O( 1)  wavenumbers (or less) because 
the decay of the vortex at the edge of the boundary layer is quite different from that 
predicted by the full equations. 

The first step in our calculation is to eliminate the pressure and spanwise velocity 
component from the linear perturbation equations. The perturbation is taken to  be 
steady and periodic in the spanwise direction with fixed wavelength. The two 
equations obtained by eliminating the pressure and spanwise velocity component 
depend on the variables X and Y denoting distance along and normal to the wall. 
These equations are parabolic in X, so that, given an initial disturbance imposed on 
the boundary layer at X = x, a marching scheme can be set up to find the 
downstream development of that  disturbance. 

The non-parallel nature of the basic flow causes the usual problems when it comes 
to defining the condition of neutral stability (for a discussion of this problem in 
connection with Tollmien-Schlichting waves in boundary layers see e.g. Gaster 1974; 
Smith 1979). The flow quantity which we choose to monitor the growth or decay of 
a vortex is 

E = (uZ+ V 2 +  W2)dY, 

where U ,  V and Ware the three dimensionless velocity components of the perturbation. 
The neutral position along the boundary layer is defined by the condition 

dE 
- = 0. 
dX 

I n  general we shall see that for walls of constant curvature a disturbance imposed 
sufficiently close to  the leading edge of the wall gives a function E ( X )  which is either 
always decreasing or increasing only over a finite range of values of X. The flow is 
taken to  be unstable in the interval in which E ( X )  is an increasing function of X .  

At any position along the wall where dE/dX = 0, the local wavenumber a, and 
Gortler number G, can be calculated, and by varying the wavenumber of the inibial 
disturbance a neutral curve can be generated in the (ax,  G,)-plane. This neutral curvc 
depends on both x and the form of the initial disturbance, and for a, 4 1 we find 

G, - as2, (1 .1)  

G, - a:. (1.2) 

whilst for a, 9 1 we obtain 

The above asymptotic forms are of course typical of convective or centrifugal 
instabilities, and (1.2) agrees well with the asymptotic results of 1. In  fact, as found 
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in I, the right-hand branch of the neutral curve is not dependent on the form and 
location of the initial disturbance. However, when a, decreases with the form of the 
initial disturbance fixed, the neutral curves for different values of x diverge and 
remain distinct even when (1  . l )  applies. By varying x we can obtain a critical value 
of G, corresponding to the smallest minimum value of G, on the sequence of neutral 
curves. In principle, by then varying the form of the initial disturbance, an overall 
critical value of G, could be computed. Such a series of calculations would be 
prohibitively expensive, but an order of magnitude for the critical Gortler number 
can be inferred from a finite number of calculations. 

Indeed, the main result of the present calculation is that the growth of Gortler 
vortices depends crucially on how the boundary layer is disturbed. Thus we show that 
there is no reason why a Gortler vortex triggered by a particular disturbance a t  some 
value of x should grow a t  the same value of the local Gortler number at which the 
same disturbance introduced elsewhere should begin to grow. This result is entirely 
consistent with the available experimental results, but is of course not in the spirit 
of parallel-flow calculations. 

The procedure of this paper is as follows. In  $2 we formulate the appropriate partial 
differential system describing the linear stage in the development of a Gortler vortex 
imposed a t  some location in the boundary layer. In  $3  we describe the finite-difference 
scheme which we have used to solve this system. In  $4 we describe the results of our 
calculations and compare them with experimental observations. 

2. Formulation of the problem and some preliminary results 
We consider the stability of a high-Reynolds-number viscous incompressible flow 

over a concave wall with radius of curvature RK(x/l), where 1 is a typical lengthscale 
along the wall. The variable x denotes distance measured along the wall whilst y 
denotes distance measured normal to the surface. Finally the variable z is chosen such 
that z, y and z form a mutually orthogonal coordinate system. 

Suppose next that U,  is a typical free-stream velocity in the x-direction, and then 
write 

uo 1 

If the curvature parameter 6 is then defined by 

we confine our attention to the limit RE + 00 with 

held fixed. The parameter G is the so-called Gortler number, which of course plays 
the same role as the Taylor number in the Taylor-vortex problem. I n  I the further 
limit G+ 00 was taken and an asymptotic form of the neutral curve appropriate to 
that limit was derived. 

It is now convenient to introduce dimensionless coordinates X, Y and 2 given by 

(x> ' 9  = 1 - 1 ( z 3  RE y? RE z ) ,  
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where it has been anticipated that any z-variation of the flow should be on the 
boundary-layer lengthscale. Such a scaling is also suggested by the available 
experimental results, which show that when Gortler vortices occur their wavelength 
is comparable to the boundary-layer thickness. The basic flow is taken to be of the 
form 

where u(X, Y ) ,  @(X, Y )  are given functions of X and Y.  Subsequently u and are 
taken to be the velocity components of a Blasius boundary layer, but for the moment 
it is not necessary to be specific about these functions. The basic flow given by (2.1) 
is then perturbed such that 

u = U,(U(X, Y),R&(X, Y ) )  (1 +O(R&),  (2.11 

u = UO(U+ U ( X ,  Y ,  Z),  &[a+ V ( X ,  Y, Z ) ] ,  Rij W(X, Y, 2)) (1 +O(R&),  
and by substituting into the Navier-Stokes equations written in terms of X, Y and 
Z it can be shown that the linearized equations which determine U ,  V, W and the 
corresponding pressure perturbation P (scaled on (vUo/Z) are 

( 2 . 2 ~ )  

(2 .2b )  

( 2 . 2 4  

u,+ vy+ w, = 0, 

uyy + u,, - vuy = UUX +ax u+ auy, 

v y y +  V,,-KGaV-P, = UV,+ Ua,+aVy+ vay, 

wyy+ w,,-P, = aW,+aWy. ( 2 . 2 d )  

Here terms of relative order R d  have been neglected and G is taken to be O(1). The 
Z-dependence above can be taken to be periodic, but such a simplification does not 
reduce the partial differential equation in question to ordinary differential equations 
since there is no rational reason why the X-derivatives acting on U,  V and W should 
be set equal to zero (as has been done in investigations prior to I).  However, a crucial 
point to note is that the X-derivatives in ( 2 . 2 M )  arise from the convective terms 
in the Navier-Stokes equations rather than from the viscous terms, and this fact 
enables us to solve ( 2 . 2 )  by a marching procedure. 

It is interesting to note that ( 2 . 2 )  also govern the centrifugal instability of certain 
boundary layers which arise in triple-deck theory (see e.g. Stewartson 1981 ; Smith 
1982). Thus if X, Y and Z and the velocity components of the disturbance are made 
dimensionless using the scales appropriate to the lower deck of a triple deck then ( 2 . 2 )  
are again found to govern the centrifugal instability of the flow in the lower deck. 
In this case and ij have a more complicated structure and it remains to be seen 
whether solutions of (2 .2 )  confined to the lower deck exist. 

Suppose next that U ,  V, W and P take the form 

( U ,  V, W, P) = ( U ( X ,  Y )  cosaz, V ( X ,  Y )  cosaz, W ( X ,  Y) sinaz, P ( X ,  Y )  cosaz), 

where a is the wavenumber of the vortex and is of course independent of X and Y .  
For computational purposes it is convenient to eliminate Pand W between (2 .2a ,  c ,  a?) 
to obtain an equation involving only U and V. This equation, together with (2 .2  b ) ,  
produces the following pair of equations to determine U and V :  

Uyy-a2U-uUx-izxU-~Uy-~y V = 0, ( 2 . 3 ~ )  

v{iixyy + a4 + a%,} + i j x  U,, + { f L x x y  + a2Gx + Ka2Ga} u 

+{izyy-ap+a'a 1 v ,+2  { 
+ v,,,,-ijv,,,-{v,+2~~) Vyy+{cxy+u%) v, = 0. (2.36) 
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Here i t  has been assumed that the basic flow satisfies tJhe equation of continuity 

ii,+v, = 0, 

and certain terms in (2 .2b )  involving X-derivatives acting on U have been eliminated 
using (2 .3b ) .  

The vortex is assumed to be confined to the boundary layer and must satisfy the 
no-slip condition a t  the wall. Thus U and V must satisfy the boundary conditions 

(2 .4 )  

However, it  is clear from ( 2 . 3 )  that these conditions are not sufficient if the 
X-derivatives in ( 2 . 3 )  are not to be set arbitrarily equal to  zero. If the basic velocity 
component ii is always positive in 0 < Y < co then it can be seen from (2 .3 )  that the 
conditions needed to specify the problem completely for U and V are 

u= V(Y),  v =  V ( Y )  ( X = F ) .  (2 .5 )  

Having imposed these initial conditions a t  X = x i t  can be seen from (2 .3 )  that  V 
and U for X > x can be obtained by marching forward in the X-direction with 
(2 .3  a ,  b )  respectively. The initial conditions (2 .5 )  correspond to some vortex pertur- 
bation being imposed on the flow a t  a given position along the curved wall. The 
growth or decay of the vortex downstream of xis dependent on the flow parameters 
a, G and basic Aow (u,B) .  It is interesting t o  note that  in any parallel-flow 
approximation to ( 2 . 3 )  the conditions ( 2 . 5 )  could not be satisfied without the 
existence of some completeness result about the discrete and continuous eigen- 
functions of the appropriate linear differential system. It is also of interest to note 
that W (  Y )  cannot be specified arbitrarily a t  Xsince, given U and Vat X = x, (2 .3b )  
can be used to compute aU/aX a t  x, and then W follows from the equation of 
continuity. 

The functions Uand Vmust of course be consistent with the boundary conditions 
( 2 . 4 ) ,  so that 

Further conditions are necessary if U and V are not to have singularities at X = 2, 
Y = 0. The appropriate conditions are found in the usual way (see e.g. Goldstein 1948) 
by expanding U and V in Taylor series in X - x  and Y a t  that  point. - -  If U and V 
are to have to have such Taylor series it can easily be shown that U ,  V must also 
satisfy 

We could of course solve ( 2 . 3 )  without U ,  V satisfying ( 2 . 7 ) ,  but the numerical 
solution near X = x, Y = 0 would have relatively large errors since U and V then 
have singularities there. 

Before deriving a more convenient form for ( 2 . 3 )  i t  is instructive to consider (2 .3b )  
in the limit Y-t  co. If we assume that U+ 1,  c - t ~ , ( X )  when Y+ co then, for large 
Y ,  U satisfies 

O(0) = V(0)  = V(0) = U(co) = V ( m )  = 0. (2 .6 )  

u"(0) = 0, P ( 0 )  = a V ( O ) ,  P ( 0 )  = 2 a 2 P ( 0 ) .  (2 .7 )  
- -  

Uyy-a2U-  u,-v, u, = 0. 

If U is to tend to zero when Y-tco, then for large y we see from ( 2 . 6 )  that  

UNeXp{--&} ( Y > >  i ) ,  
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but a parallel-flow approximation ignoring the term fi a/aX above would give 

U -  exp{-aY) ( Y  + 1) .  (2.8) 

Thus parallel-flow theory (or any approximation that drops the term U, in ( 2 . 3 ~ ) )  
leads to an incorrect form for the structure of the disturbance for Y 9 1 .  Moreover, 
for a 4 1 the asymptotic form (2 .8 )  shows that the disturbance is no longer confined 
to the boundary layer. It is in this limit, and also for a = 0(1 ) ,  that the parallel-flow 
theories give quite different results. For large a it was shown in I that the disturbance 
is confined to an internal viscous layer located where (fray( has a local maximum. 
I n  this case parallel-flow theory gives correctly the first term in an asymptotic 
expansion of the neutral value of G in powers of a-4. However, in this limit the 
non-parallel-flow theory of I can be used to write down in closed form the neutral 
Gortler number in an asymptotic form involving a-4. Thus, in the only regime where 
parallel-flow theory has any relevance, a more accurate asymptotic result is readily 
available. 

For a = 0(1) it is clear from above that separable solutions of (2.3) of the type 
found in I are no longer available, and numerical integration of (2.3) is necessary. 
In  view of the previous discussion it is to be expected that such a task is made easier 
by making the change of variables ( X ,  Y ) + ( X , y ) ,  where y = Y(ZX)-i) .  If this 
transformation is made then (2.3) become 

~ , , , - 2 x a U ~  = 2X{tiY V+ax U + a 2 W + { ( 2 X ) 4 u - y f i }  U,, ( 2 . 9 ~ )  

- 4 X 2 { - a x y y + a 2 ~ G u + a 2 ~ x }  (2 .9b )  

All the calculations carried out were for the Blasius velocity profile 

where f satisfies 

f"+f = 0, 

f(0) = f ( O )  = 0, f (c0)  = I .  

The aim of the calculations was to determine how the initial disturbance imposed 
a t  Xdevelops downstream of that location. In  order to measure the growth or decay 
of the disturbance some flow quantity must be monitored as the disturbance develops 
with increasing X. After some experimentation it was decided to use the dimensionless 
energy E of the disturbance defined by 

E = { V ( X ,  Y )  + V2(X,  Y )  + W 2 ( X ,  Y ) }  d Y .  
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This quantity depends only on X, and, rewriting the above integral in terms of an 
integral over 7,  we obtain 

r m  

Thus we can show that cr, the local growth rate of the energy, is given by 

aE/ax aE,/ax 1 +-. El 2X 
-- a(X)  = ~ - 

E 
(2.10) 

For a given disturbance the position XN of neutral stability is defined by the 
condition u(X,) = 0. Thus in our calculations we fix a and the Gortler number G and 
march downstream until u vanishes. Without any loss of generality the Gortler 
number G can be set arbitrarily by suitable choice of the reference lengthscale 1. It 
was found convenient to  take C = 0.025 in the calculation that we will describe in 
$3. We stress that  other choices of G give identical results, but with the variable X 
resealed. I n  order to  interpret the results i t  is convenient to  define the local 
wavenumber a, and Gortler number G, scaled on the local boundary-layer thickness 

1 
by 

a, = aX2, 

G, = CXg K(X) 

respectively. 
In  I it was shown that for a, %- 1 the flow is neutrally stable where 

G, - a;, 

so that K ( X )  must increase at least as quickly as Xi if the vortex is to be unstable 
for X $ 1. In particular, for walls of constant curvature, G, - a: and the flow is 
stable for X 9 1 .  

3. The numerical scheme 
The partial differential equations (2.9) were integrated using finite-difference 

approximations with step lengths h and e in the 7- and X-directions respectively. We 
denote the values of U and V a t  7 = nh, X = X + j s  by U$ and VL, where 0 < n < N 
so that ‘infinity’ in the 7-direction has been approximated by 7 = vrn = Nh. We 
suppose that { UL}, { V$} are known a t  the j t h  location and show how these quantities 
are advanced to X = X,+* = x+ /j + 11 E .  We discretize the X-momentum equation 
( 2 . 9 ~ )  by writing 

where dn denotes a-evaluation a t  7 = nh, X = X+je whilst Pn denotes the right-hand 
side of ( 2 . 9 ~ )  evaluated at thej th  step. Thus for example the term -@U, is replaced 

The implicit scheme (3.1) leads to a tridiagonal system of N -  1 equations for the 
N -  1 unknowns U{+l, ..., UgJ, after setting U$+l = Ujfl N = 0. Having advanced U to  
the u+ 1)th step the following scheme is then used to  advance the normal velocity 
component V .  

by -?pi&{ UL,, - UL-,}. 
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Consider firstly the terms on the right-hand side of (2.9b), which, apart from the 
last one, we discretize in terms of { ?I&}, { V&} using the central-difference formulae 

Y1-Y-1 
Y;, = - 5 - 7  

Y1- 2Yo + Y-1 y;; = 
h 7 

y'i = Y2 - 2Yl+ 2Y-1- Y -2 

2h3 

to approximate the derivatives in the q-direction. The last term on the right-hand 
side of (2.9b) is replaced by 

which is known already since U has been calculated at the (i + 1)th step. The left-hand 
side of (2.9b) is replaced by 

1 h4 { vi,+:, - 4 p + 1  + 6 vj+l- 4 vj+1 n-1 + vj+i) 12-2 n+1 n 

I +?{(auu+a%);,v&+l- V]-- (a); '+l -2V&++'+ vI,yl- vI ,+l+2vi-  VL-11 n 4xjh2['n+1 

(1 < 72. < N-1). 

Thus using the boundary condition to show that 

V$ = V$ = V&+, = 0, VL1 = vi,, 
we obtain apentadiagonal system of N- 1 equations for V{+l, . . . , VG!,. Having solved 
this system we have then advanced both Uand V to the (i+ 1)th step, and the process 
can be repeated to find U and V a t  the (j+2)th step, etc. 

Numerical investigations of the above scheme confirmed that the evaluation of U,, 
and V,,,, in (2.9a, b) at the j t h  step provides a scheme which is stable for e = O(h). 
Prior to using this scheme, these derivatives were evaluated at the j t h  step, but the 
resulting scheme proved to be stable only for e = O(h2). These results are of course 
typical of diffusion equations with constant coefficients; in our problem the ratio of 
e/h required for stability will depend on X, and our checks indicated that in general 
the smallest value of e / h  was required near x, where, as we shall see, the flow changes 
relatively quickly. 

In  order to evaluate the energy integral E it  is of course necessary for us to compute 
the spanwise velocity component W .  If the continuity equation is written in terms 
of X and 7 we obtain 

so that to calculate W at thejth step U,, U and V are required. If U and V are known 
at thej th  step, then U, can be evaluated from ( 2 . 9 ~ )  by writing 

1 
2 x a  

U, = ---(U,,-2X[ay V + ~ , U + a z u ] - [ ( 2 X ) t ~ + y ~ ]  U,} 

and then using central differences to approximate the q-derivatives appearing on the 
right-hand side of this equation. Alternatively U, can be calculated by using { UL}, 
{ Uk+l) and writing 
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I I I I 1 I I I 1 I I 1 
20 40 60 80 100 120 140 160 180 200 220 > 

X 

FIGURE 1 .  The development of E with increasing X ,  corresponding to 
the initial conditions (3.1) and a = 0.069, G = 0.025 and X = 20. 

Both methods were used and gave identical results, which gives a check on the 
implicit scheme used to advance U to the (i+ 1)th step. 

Having calculated aU/aX,  the spanwise velocity component can be calculated and 
the energy integral computed using Simpson’s rule. 

We now describe some of the checks which were used to determine the accuracy 
of the numerical scheme described above. The disturbance imposed on the flow was 
taken to be 

which of course satisfies the required conditions a t  Y = 0. The parameters a and G 
have the values 0.069 and 0.025 respectively, whilst K = 1 and infinity was approx- 
imated by 71 = vm = 10. With a fixed value of h = 0.1 several calculations were 
performed using different values of s / h  and the stability of the scheme was confirmed 
for E = O(h) .  In fact it  was found that e l h  = 2 was sufficiently accurate for our 
purposes. Further checks were performed by varying either qm or h with s lh  fixed, 
and i t  was determined that h = 0.1, va, = 10 give sufficiently accurate results. Apart 
from the checks described above, several other test runs corresponding to different 
initial conditions with different values of a and G were carried out, and it was not 
found necessary to change the values of E ,  h, and qoo given above. 

u = ?/8e--T2, v = 0, x = x= 20, (3.2) 

4. Results and discussion 
We describe finally our results obtained by integrating the disturbance equations 

with the initial data as given by (3.2) and with (vm, h, 8, a ,  G, K )  = (10, 0.1,0.2,0.069, 
0.025, 1 ) .  In figures 1 and 2 we have shown how the energy and growth rate a ( X )  
vary downstream of X = x, where the disturbance is introduced into the flow. 
Immediately downstream of x the energy decreases until it reaches a minimum at 
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FIGURE 2. The growth-rate function u ( X )  correspondin4 to the initial 
conditions (3.1) and a = 0.069, G = 0.025 and X = 20. 

T 

FIGURE 3. The growth-rate function u ( X )  corresponding to the 
initial conditions (3.1) and a = 0.1081, G = 0.025 and X = 50. 

X x 74, beyond which the local growth rate u ( X )  is positive and the flow is said to 
be unstable. I n  fact u ( X )  increases until i t  reaches a maximum, after which i t  
decreases monotonically and becomes negative again where X z lo4. Thus the 
particular Gortler vortex introduced into the flow a t  x i s  unstable only for a finite 
range of values of X. It is to be expected that for a wall of constant curvature a given 
vortex is always stable when X+ 00 because the local wavenumber a, and the local 
Gortler number G, satisfy G, - a:, whereas from I we know that for a, &- 1 the 
neutral value of G, is O(a:). 

The calculation described above was repeated with a = 0.1081 and x= 50 to 
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FIUURE 4. The dependence of v ( X )  on the location of 
the initial disturbance, with a = 0.069, a = 0.025. 

produce the results shown in figure 3. If x i s  held fixed and a increased then the range 
of values for which a(X) > 0 decreases until at a = a* the growth-rate function a(X) 
and its derivative vanish simultaneously. If the calculation is repeated for a > a* then 
a(X) remains negative for all X. The value of a* depends on F e n d  the form of the 
initial perturbation. 

In figure 4 we have shown how the function a ( X )  changes when x, the location 
of the initial disturbance, is varied, with a = 0.069. It can be seen from this figure 
that ultimately all the growth rate curves merge when X increases and that, apart 
from the case x =  10, the neutral positions where a(X) = 0 lie very close together. 
If x is decreased below x = 10, the zeros of a(X) move progressively to the right, 
so that the flow remains stable over an increasingly large range of values of the Gortler 
number. We know of no physical reason why, aa the latter result suggests, 
disturbances introduced progressively closer to the leading edge should be increasingly 
less efficient in triggering the downstream linear growth of Gortler vortices. 

We now turn to the manner in which the velocity field changes as the boundary 
layer grows downstream of X = x. We have illustrated in figures 5(a, b,  c) how U ,  
V and W ,  corresponding to the results of figures 1, 2, vary with X. We recall that 
initially the normal velocity component of the initial disturbance is zero and it can 
be seen that the size of this component increases monotonically with X. The spanwise 
velocity component W is initially proportional to aU/aX, which is non-zero. Thus 
U and W both decay initially downstream of x before growing at larger values of 
X. It is clear from figure 5 that the essential shape of the three velocity components 
does not change greatly with increasing X. We also point out that since 7 = Y(2X)f 
the vortices diffuse outwards at the same rate as does the basic Blasius profile. 
Moreover, since the wavelength of the vortices remains constant with X increasing, 
the vortices become more elongated in the Y-direction as they develop downstream 
of x. It is also clear that the development discussed above could not be predicted 
by a parallel flow theory which ignores X-derivatives in the linear stability equations 
(2.9). 
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FIGURE 5. The development of the velocity field corresponding to 

the calculations performed in order to construct figures 1, 2. 
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FIGURE 6. The neutral curves corresponding to different locations 

of the initial conditions (3.1), with G = 0.025. 

We have found then that, depending on the wavenumber a ,  the growth-rate 
function a ( X )  has a t  most two zeros. At any value of X where a ( X )  vanishes, the 
local wavenumber a, and Gortler number G, can be calculated and are denoted 
by a,”, GZ, respectively. If x is held fixed and a is varied, a neutral curve in the 
(a:, G,N)-plane can be drawn on which cr(X) vanishes. The results of such a calculation 
for several values of r a r e  illustrated in figure 6. Each neutral curve has a minimum, 
but, whereas the right-hand branches of these curves ultimately merge, the left-hand 
branches remain distinct, In  fact, as we shall see shortly, the right-hand branches 
approach the asymptotic neutral curve given in I, whilst on the left-hand branches 
the results imply that, when a,”+O, @ - (a,”)-2 for any given x. We can also infer 
from figure 6 that there is a value of x, close to x =  50, which leads to a growing 
Gortler vortex a t  the least value of the Gortler number G,”. If x is increased, then, 
surprisingly, the neutral curves become much more flat, with a minimum value of 
G,” always greater than G, corresponding to X = x. Thus however far downstream 
the flow is disturbed, c ( X )  is always initially negative and the flow is locally stable. 
This result should perhaps not be entirely unexpected, since an arbitrary initial 
disturbance will in general contain components that decay immediately downstream 
of x with large damping rates. If calculations are performed for values of x < 10, 
it is found that the neutral curves follow the trend indicated by the curves 
corresponding to x = 10, 20 and more progressively up and across to the right. We 
have no physical explanation why this should be the case. 

Apart from the calculations reported above for the initial conditions (3.1 l ) ,  several 
different forms for the initial conditions were investigated. The qualitative dependence 
of the resulting neutral curves on x was found to be quite similar to that described 
above. In figure 7 we have shown the neutral curves corresponding to several different 
forms of initial condition imposed at x = 50. In this figure we have also plotted the 
two-term asymptotic neutral curve 

@ = 5 . 9 1 ( ~ , ” ) ~  1 +-- { OgJ 



Growth of Grtler vortices in boundary layers 55 

I00 

SO 

0 
0 

. o  

0 

e o  

/ d  
/ i  

HHmmerlin, Smith 

FIGURE 7 .  A comparison between the neutral curves corresponding to different initial conditions 
imposed at x = 50, the two-term asymptotic neutral curve (denoted by a )  and the experimental 
observations of Tani (1962) and Winoto & Crane (1980). The curves b, c ,  d ,  e correspond 
respectively to the initial conditions ( U  = v6e-7’, V = 0) ; ( U  = 0, V = ~f’e-7~) ; 
V = ( v + ( t + j ~ ~ X ) v ~ ) e - k 7 ~ ,  V = 0); ( U  = (1-cos v2)e-k4, V = 0). The curvef corresponds to the 
initial conditions d ,  but with K ( X )  = O.OlX,’tvhilst 0 ,  V are the experimental results of Tani with 
R = 10 m, U,  = 11 m/s and R = 10 m, 0, = 16 m/s respectively. The experimental results of 
Winoto & Crane are denoted by 0 and were obtained in a curved rectangular channel of width 
a ,  radius of curvature r ,  with r ja  = 3.5. 

found in I. The agreement between the asymptotic result and the numerical results 
is satisfactory even for moderate values of a:, even though the asymptotic result is 
valid only in the limit a,” --f co. 

of the initial 
disturbance is varied. We could, of course, find the most dangerous location for each 
type of disturbance by varying Xand plotting the corresponding neutral curves. Such 
a large calculation would show which of the finite set of initial conditions under 
consideration produces a growing vortex a t  the smallest Gortler number. There is, 
of course, no reason to  suppose that even more dangerous critical conditions could 
not be found by varying u a n d  v, so i t  was decided not to perform that calculation. 
However, our calculations with various initial conditions a t  different values of x 
suggest that  the most dangerous possible initial conditions would lead to a neutral 
curve with a minimum value of GF the same order of magnitude as the smallest 
minimum value of G,” shown in figure 7. 

Our principal conclusion, therefore, is that  the concept of a unique neutral curve, 
so familiar in hydrodynamic stability theory, is not tenable in the Gortler-vortex 
problem if the growth of the boundary layer is taken into account in a self-consistent 
manner. We predict therefore that experimentally the location where a Gortler vortex 

The neutral curves shown in figure 7 change when the location 
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will appear in a boundary layer will depend on how the disturbances responsible for 
the growth of the vortices arise. Some experimental results consistent with this view 
have been given by Winoto & Crane (1980). 

We now turn to the question of how our numerical results are related to previous 
parallel-flow approximations and experimental observations. I n  figure 7 we have 
shown, for example, the parallel-flow theories of Hammerlin (1956) and Smith (1955). 
It is clear that the parallel-flow theories have any relevance only at high wavenumbers, 
where, as shown in I, an asymptotic neutral curve is easily generated. When the 
wavenumber decreases, the different parallel-flow theories give increasingly divergent 
neutral curves, until at small wavenumbers the various parallel-flow theories are in 
complete disagreement. This disagreement between the parallel-flow theories is, of 
course, not related to the non-uniqueness of the neutral curve that we have found. 
In  the parallel-flow theories the initial-value problem is not considered, and the wide 
spread of the neutral curves at small wavenumbers results from the inability of any 
parallel-flow approximation to describe correctly the decay of a vortex at the edge 
of the boundary layer. 

In  figure 7 we have also shown some experimentally determined points due to Tani 
(1962) and Winoto & Crane (1980). It should be noted that the neutral curves we 
have plotted correspond to a particular form for the initial condition, and neutral 
curves below the ones shown can be found by varying 0 and v. Nevertheless, apart 
from the experimental point in the lower left-hand corner of this figure, the 
experimental results are consistent with our calculations. Indeed, since a t  finite 
wavenumbers a unique neutral curve does not exist, the agreement between theory 
and experiment shown in figure 7 is perhaps all that we can reasonably expect in the 
Gortler problem. The single experimental point in the lower left-hand corner of figure 
7 could possibly correspond to some initial condition more complicated than those 
considered in this paper. It should be stressed that the different experimental points 
corresponding to a particular experimental run describe the variation of the 
wavenumber and Gortler number of a vortex downstream of where it is first observed. 
Thus, since the boundary layer grows like X i ,  the local Gortler number and 
wavenumber grow, respectively, like Xf and X J  as the disturbance moves downstream, 
so that the experimental points corresponding to a particular run should be on a line 
of slope %. 

We now turn to the question of whether the left-hand branches of the numerically 
obtained neutral curves have a definite asymptotic structure. We recall that Smith 
(1979,1980) has shown that Tollmien-Schlichting waves in growing boundary layers 
have two distinct asymptotic structures to the neutral curve at high Reynolds 
numbers. Thus we might expect that when a,N+O an asymptotic structure should 
be available to complement the large-a: structure of I. On the basis of what is known 
about the related BBnard and Taylor problems it is to be expected that when a2 + 0 
the Gortler number will be of order on the left-hand branch. An investigation 
of the numerical results that  we have obtained confirms that on the left-hand 
branches of, for example, the curves in figure 6, GZ - (a?)-2 for sufficiently small a:. 

The latter result suggests that  for a Q 1 an asymptotic solution of (2.9) can be found 
by first expanding C in the form 

90 91 G = - + - +  ... 
a2 a 

and then writing down similar expansions for U and V with u = O( V ) .  If these 
expansions are substituted into (2.9) and like powers of a are equated, then at first 
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order we obtain (2.9) with a = 0 and a2G replaced by go. Thus, in contrast with the 
high-wavenumber limit, the small-wavenumber limit leads to a sequence of partial 
differential equations to be solved. The coefficient go is then fixed and the value of 
X obtained a t  which the flow is locally neutrally stable. This position will depend 
on the form of the imposed initial conditions, so that the left-hand branch of the 
neutral curve is not unique. Thus it is only at large wavenumbers that a unique 
neutral curve exists and parallel-flow theory has any validity. 

We now make some comments on the possible relevance of this work to the 
transition process for boundary layers on curved walls. We note that Bippes & Gortler 
(1972) have described an experimental investigation of this process, and we shall 
describe some of their results. It was found by Bippes & Gortler that, wherever 
vortices develop, they are initially steady and only become time dependent some 
distance downstream of where they first develop. This time dependence occurs when 
the vortices become unstable to wavy-vortex-like perturbations after first growing 
into finite-amplitude steady Gortler vortices. In  I some discussion of vortices that 
propagate in the flow direction was given, and it was found that at high wavenumbers 
such disturbances are more stable than steady disturbances, and there is no reason 
to suppose that this is not the case at finite wavenumbers. Moreover, since the 
experiments show no evidence of the vortices being time dependent in the linear 
regime, we feel that  our assumption of steady perturbation is sensible. 

In  practical situations we expect that both Tollmien-Schlichting waves and Gortler 
vortices will be important in the transition process on curved walls. The interaction 
between these modes of instability is a non-trivial problem, but we can make some 
tentative remarks about the circumstances under which empirical laws such as the 
es law would be dominated by Gortler vortices. Our calculations have shown that 
for Gortler numbers O(10) the growth rates of Gortler vortices are an order of 
magnitude larger than those typical of Tollmien-Schlichting waves. This suggests 
that, for flows with Gortler numbers greater than about 10, the prediction of 
transition based on, say, the ee law, would be dominated by the efFect of Gortler 
vortices. In  view of the definition of the Gortler number, and the fact that 
Tollmien-Schlichting waves are unstable for - O(250),  it  is to be expected that 
Gortler vortices dominate the transition process for walls with 1/R > O(&). 
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